Entanglement Witnesses Arising from Exposed Positive Linear Maps

نویسندگان

  • Kil-Chan Ha
  • Seung-Hyeok Kye
چکیده

We consider entanglement witnesses arising from positive linear maps which generate exposed extremal rays. We show that every entanglement can be detected by one of these witnesses, and this witness detects a unique set of entanglement among those. Therefore, they provide a minimal set of witnesses to detect all entanglement in a sense. Furthermore, if those maps are indecomposable then they detect large classes of entanglement with positive partial transposes which have nonempty relative interiors in the cone generated by all PPT states. We also provide a one parameter family of indecomposable positive linear maps which generate exposed extremal rays. This gives the first examples of such maps between three dimensional matrix algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulating Multi-qudit Entanglement Witnesses by Using Linear Programming

A new class of entanglement witnesses (EWs) called reduction type entanglement witnesses is introduced, which can detect some multi-qudit entangeled states including PPT ones with Hilbert space of dimension d1 ⊗ d2 ⊗ ... ⊗ dn . The novelty of this work comes from the fact that the feasible regions turn out to be convex polygons, hence the manipulation of these EWs reduces to linear programming ...

متن کامل

Spectral conditions for positive maps and entanglement witnesses

We provide partial classification of entanglement witnesses and positive maps which is based on a family of spectral conditions. Interestingly many well known examples of positive maps (e.g. transposition, reduction map, the family of Choi maps) belong to the class constructed via spectral conditions.

متن کامل

ar X iv : q ua nt - p h / 05 06 09 5 v 1 1 3 Ju n 20 05 Schmidt states and positivity of linear maps

Using pure entangled Schmidt states, we show that m-positivity of a map is bounded by the ranks of its negative Kraus matrices. We also give an algebraic condition for a map to be m-positive. We interpret these results in the context of positive maps as entanglement witnesses, and find that only 1-positive maps are needed for testing entanglement.

متن کامل

On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps

We construct a new class of positive indecomposable maps in the algebra of d × d complex matrices. Each map is uniquely characterized by a cyclic bistochastic matrix. This class generalizes a Choi map for d = 3. It provides a new reach family of indecomposable entanglement witnesses which define important tool for investigating quantum entanglement.

متن کامل

Entangled States with Positive Partial Transposes Arising from Indecomposable Positive Linear Maps, Ii

In the paper under the same title, we have constructed entangled states with positive partial transposes using indecomposable positive linear maps between matrix algebras. In this paper, we show that every entanglement with positive partial transpose arises in this way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Open Syst. Inform. Dynam.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011